Helicases

Tuesday, December 1, 2009

Helicases are a class of enzymes vital to all living organisms. They are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two annealed nucleic acid strands (i.e. DNA, RNA, or RNA-DNA hybrid) using energy derived from ATP hydrolysis. Many cellular processes (DNA replication, transcription, translation, recombination, DNA repair, ribosome biogenesis) involve the separation of nucleic acid strands. Helicases are often utilized to separate strands of a DNA double helix or a self-annealed RNA molecule using the energy from ATP hydrolysis, a process characterized by the breaking of hydrogen bonds between annealed nucleotide bases. They move incrementally along one nucleic acid strand of the duplex with a directionality and processivity specific to each particular enzyme. There are many helicases (14 confirmed in E. coli, 24 in human cells) resulting from the great variety of processes in which strand separation must be catalyzed. Helicases adopt different structures and oligomerization states. Whereas DnaB-like helicases unwind DNA as donut shaped hexamers, other enzymes have been shown to be active as monomers or dimers. Studies have shown that helicases may act passively, waiting for uncatalyzed unwinding to take place and then translocating between displaced strands, or can play an active role in catalyzing strand separation using the energy generated in ATP hydrolysis. In the latter case, the helicase acts comparably to an active motor, unwinding and translocating along its substrate as a direct result ATPase activity.. Helicases may process much faster in vivo than in vitro due to the presence of accessory proteins that aid in the destabilization of the fork junction. Defects in the gene that codes helicase cause Werner syndrome, a disorder characterized by the appearance of premature aging.

0 comments: