Genetic engineering
Friday, July 10, 2009
There are a number of ways through which genetic engineering is accomplished. Essentially, the process has five main steps
1. Isolation of the genes of interest
2. Insertion of the genes into a transfer vector
3. Transfer of the vector to the organism to be modified
4. Transformation of the cells of the organism
5. Selection of the genetically modified organism (GMO) from those that have not been successfully modified
Isolation is achieved by identifying the gene of interest that the scientist wishes to insert into the organism, usually using existing knowledge of the various functions of genes. DNA information can be obtained from cDNA or gDNA libraries, and amplified using PCR techniques. If necessary, i.e. for insertion of eukaryotic genomic DNA into prokaryotes, further modification may be carried out such as removal of introns or ligating prokaryotic promoters.
Insertion of a gene into a vector such as a plasmid can be done once the gene of interest is isolated. Other vectors can also be used, such as viral vectors, bacterial conjugation, liposomes, or even direct insertion using a gene gun. Restriction enzymes and ligases are of great use in this crucial step if it is being inserted into prokaryotic or viral vectors. Daniel Nathans and Hamilton Smith received the 1978 Nobel Prize in Physiology or Medicine for their isolation of restriction endonucleases.
Once the vector is obtained, it can be used to transform the target organism. Depending on the vector used, it can be complex or simple. For example, using raw DNA with gene guns is a fairly straightforward process but with low success rates, where the DNA is coated with molecules such as gold and fired directly into a cell. Other more complex methods, such as bacterial transformation or using viruses as vectors have higher success rates.
After transformation, the GMO can be selected from those that have failed to take up the vector in various ways. One method is screening with DNA probes that can stick to the gene of interest that was supposed to have been transplanted. Another is to package genes conferring resistance to certain chemicals such as antibiotics or herbicides into the vector. This chemical is then applied ensuring that only those cells that have taken up the vector will survive.
0 comments:
Post a Comment