DNA structure

Sunday, September 20, 2009

DNA structure shows a variety of forms, both double-stranded and single-stranded. The mechanical properties of DNA, which are directly related to its structure, are a significant problem for cells. Every process which binds or reads DNA is able to use or modify the mechanical properties of DNA for purposes of recognition, packaging and modification. The extreme length (a chromosome may contain a 10 cm long DNA strand), relative rigidity and helical structure of DNA has led to the evolution of histones and of enzymes such as topoisomerases and helicases to manage a cell's DNA. The properties of DNA are closely related to its molecular structure and sequence, particularly the weakness of the hydrogen bonds and electronic interactions that hold strands of DNA together compared to the strength of the bonds within each strand.

Dna Structure
Experimental techniques which can directly measure the mechanical properties of DNA are relatively new, and high-resolution visualization in solution is often difficult. Nevertheless, scientists have uncovered large amount of data on the mechanical properties of this polymer, and the implications of DNA's mechanical properties on cellular processes is a topic of active current research. The DNA found in many cells can be macroscopic in length - a few centimetres long for each human chromosome. Consequently, cells must compact or "package" DNA to carry it within them. In eukaryotes this is carried by spool-like proteins known as histones, around which DNA winds. It is the further compaction of this DNA-protein complex which produces the well known mitotic eukaryotic chromosomes.

Read more...

DNA Double Helix

Tuesday, September 1, 2009

DNA is a normally double stranded macromolecule. Two polynucleotide chains, held together by weak thermodynamic forces, form a DNA molecule. Features of the DNA Double Helix * Two DNA strands form a helical spiral, winding around a helix axis in a right-handed spiral * The two polynucleotide chains run in opposite directions * The sugar-phosphate backbones of the two DNA strands wind around the helix axis like the railing of a sprial staircase * The bases of the individual nucleotides are on the inside of the helix, stacked on top of each other like the steps of a spiral staircase. DNA Helix Axis The helix axis is most apparent from a view directly down the axis. The sugar-phosphate backbone is on the outside of the helix where the polar phosphate groups (red and yellow atoms) can interact with the polar environment. The nitrogen (blue atoms) containing bases are inside, stacking perpendicular to the helix axis.

Read more...

Components of DNA

DNA is a polymer. The monomer units of DNA are nucleotides, and the polymer is known as a "polynucleotide." Each nucleotide consists of a 5-carbon sugar (deoxyribose), a nitrogen containing base attached to the sugar, and a phosphate group. There are four different types of nucleotides found in DNA, differing only in the nitrogenous base. The four nucleotides are given one letter abbreviations as shorthand for the four bases. • A is for adenine • G is for guanine • C is for cytosine • T is for thymine DNA Backbone The DNA backbone is a polymer with an alternating sugar-phosphate sequence. The deoxyribose sugars are joined at both the 3'-hydroxyl and 5'-hydroxyl groups to phosphate groups in ester links, also known as "phosphodiester" bonds. DNA Double Helix DNA is a normally double stranded macromolecule. Two polynucleotide chains, held together by weak thermodynamic forces, form a DNA molecule. Features of the DNA Double Helix • Two DNA strands form a helical spiral, winding around a helix axis in a right-handed spiral • The two polynucleotide chains run in opposite directions • The sugar-phosphate backbones of the two DNA strands wind around the helix axis like the railing of a sprial staircase • The bases of the individual nucleotides are on the inside of the helix, stacked on top of each other like the steps of a spiral staircase.

Read more...